CXCL1/CXCL8 (GROα/IL-8) in human diabetic ketoacidosis plasma facilitates leukocyte recruitment to cerebrovascular endothelium in vitro

Tatsushi Omatsu,1,3 Gediminas Cepinskas,1,4 Cheril Clarson,2,3 Eric K. Patterson,1 Ibrahim M. Alharfi,5 Kelly Summers,6 Pierre-Olivier Couraud,7–9 Ignacio A. Romero,10 Babette Weksler,11 and Douglas D. Fraser1–3,12–14 (On Behalf of the Canadian Critical Care Translational Biology Group)

1Centre for Critical Illness Research, London, Ontario, Canada; 2Children’s Health Research Institute, London, Ontario, Canada; 3Department of Pediatrics, Western University, London, Ontario, Canada; 4Department of Medical Biophysics, Western University, London, Ontario, Canada; 5Department of Pediatric Critical Care, King Fahad Medical City, Riyadh, Saudi Arabia; 6Department of Microbiology and Immunology, Western University, London, Ontario, Canada; 7Institut National de la Sante et de la Recherche Medicale, U1016, Institut Cochin, Paris, France; 8Centre National de la Recherche Scientifique, UMR8104, Paris, France; 9Université Descartes, Sorbonne Paris Cité, Paris, France; 10Biomedical Research Network, The Open University, Milton Keynes, United Kingdom; 11Department of Medicine, Weill Cornell Medical College, New York, New York; 12Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; 13Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada; and 14Translational Research Centre, London, Ontario, Canada

Submitted 2 December 2013; accepted in final form 4 March 2014

Omatsu T, Cepinskas G, Clarson C, Patterson EK, Alharfi IM, Summers K, Couraud PO, Romero IA, Weksler B, Fraser DD (On Behalf of the Canadian Critical Care Translational Biology Group). CXCL1/CXCL8 (GROα/IL-8) in human diabetic ketoacidosis plasma facilitates leukocyte recruitment to cerebrovascular endothelium in vitro. Am J Physiol Endocrinol Metab 306: E1077–E1084, 2014. First published March 11, 2014; doi:10.1152/ajpendo.00659.2013.—Diabetic ketoacidosis (DKA) is an inflammatory state with acute systemic elevations in inflammatory cytokines and chemokines. In rats, DKA increases leukocyte adhesion to cerebral microvessels (2). In human DKA, leukocyte adhesion to the cerebral microvasculature has not been reported. We hypothesized that leukocyte adhesion to activated human cerebrovascular endothelial cells (hCMEC/D3) is increased in human DKA plasma and can be suppressed with neutralizing antibodies to CXCL1/CXCL8.

MATERIALS AND METHODS

This study was approved by the Health Sciences Research Ethics Board at Western University. Consent was obtained from the legal guardians of all pediatriate patients admitted with DKA, and both legal guardian consent and patient assent were obtained for type 1 diabetes control patients. Biochemical diagnostic criteria for DKA included hyperglycemia (>11 mmol/l, bicarbonate <15 mmol/l, and ketonemia (9). DKA is classified according to severity of acidosis as mild (venous pH < 7.3), moderate (pH < 7.2), or severe DKA (pH < 7.1) (4, 38). Only severe or moderate DKA cases were used in this study. Clinical patients with
controlled type 1 diabetes ($A1c < 10\%$ and no DKA for 3 mo) served as controls.

Blood collection and processing. Blood for research purposes was obtained on hospital presentation at the time of clinically indicated blood draws. Blood was drawn into citrate-containing tubes (Vacutainers; BD Biosciences, Mississauga, ON, Canada) by certified nursing personnel, placed on ice, and immediately transferred to the Translational Research Centre facility for processing by standard operating procedures (www.translationalresearch.ca; London, ON, Canada) (1, 14). Briefly, blood was centrifuged at 1,500 g for 15 min (4°C), and the upper plasma layer was collected in 250-μl aliquots and frozen at −80°C. Thawed plasma was maintained on ice for short periods prior to use in experiments, and freeze-thaw cycles were avoided.

Human plasma inflammatory protein analysis. The concentrations of 21 plasma cytokines/chemokines and soluble adhesion markers were measured: interleukin (IL)-1β, IL-2, IL-6, IL-10, IL-17, interferon-α2 (IFNα2), interferon-γ (IFNγ), granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), CXC chemokine ligand 1 (CXCL1), growth-regulated oncogene-α (GROα), CXCL8 (IL-8), CXCL10 [interferon-γ-induced protein-10 (IP-10)], CC chemokine ligand 2 (CCL2; monocyte chemoattractant protein-1), CCL3 [macrophage inflammatory protein (MIP)-1α], CCL4 (MIP-1β), tumor necrosis factor-α (TNFα), soluble cluster of differentiation 40 ligand (sCD40L), soluble endothelin-selectin (sE-selectin), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1). Concentrations of analytes were determined with multiplexed immunoassay kits and a Bio-Plex 200 readout System (Bio-Rad Laboratories, Hercules, CA), which utilizes Luminex xMAP fluorescent bead-based technology (Luminex). Levels were automatically calculated from standard curves using Bio-Plex Manager software (version 4.1.1; Bio-Rad Laboratories, Hercules, CA).

Human cerebral microvascular endothelial cells. The human cerebral microvascular endothelial cell line (hCMEC/D3) (49) was used as a model of brain microvascular endothelium in vitro. The hCMEC/D3 cell line offers an ideal opportunity to study human cerebrovascular cells in isolation from other cells and represents a stable, fully characterized, and well-differentiated human brain endothelial cell line (48). hCMEC/D3 cells were cultured in VascuLife basal medium (VL; VascuLife EnGS-Mv Mammoth, CA), which utilizes Luminex xMAP fluorescent bead-based technology (Luminex). Levels were automatically calculated from standard curves using Bio-Plex Manager software (version 4.1.1; Bio-Rad Laboratories, Hercules, CA).

Human cerebral microvascular endothelial cells. The human cerebral microvascular endothelial cell line (hCMEC/D3) (49) was used as a model of brain microvascular endothelium in vitro. The hCMEC/D3 cell line offers an ideal opportunity to study human cerebrovascular cells in isolation from other cells and represents a stable, fully characterized, and well-differentiated human brain endothelial cell line (48). hCMEC/D3 cells were cultured in VascuLife basal medium (VL; VascuLife EnGS-Mv Mammoth, CA), which utilizes Luminex xMAP fluorescent bead-based technology (Luminex). Levels were automatically calculated from standard curves using Bio-Plex Manager software (version 4.1.1; Bio-Rad Laboratories, Hercules, CA).

Human cerebral microvascular endothelial cells. The human cerebral microvascular endothelial cell line (hCMEC/D3) (49) was used as a model of brain microvascular endothelium in vitro. The hCMEC/D3 cell line offers an ideal opportunity to study human cerebrovascular cells in isolation from other cells and represents a stable, fully characterized, and well-differentiated human brain endothelial cell line (48). hCMEC/D3 cells were cultured in VascuLife basal medium (VL; VascuLife EnGS-Mv Mammoth, CA), which utilizes Luminex xMAP fluorescent bead-based technology (Luminex). Levels were automatically calculated from standard curves using Bio-Plex Manager software (version 4.1.1; Bio-Rad Laboratories, Hercules, CA).

Polymorphonuclear leukocyte adhesion assay. Human polymorphonuclear leukocytes (PMNs) were freshly isolated from venous blood of healthy volunteers using standard dextran sedimentation and gradient separation on Histopaque-1077 (Sigma-Aldrich). This procedure yields a PMN population that is 95–98% viable (trypan blue exclusion) and 98% pure (acetic acid crystal violet staining) (3). Isolated PMNs were resuspended in PBS at 3 × 10^6 PMN/ml and subsequently incubated at room temperature for 10 min before perfusion. hCMEC/D3 cells were grown to confluence in μ-Slide VI0.4 channels (IBIDI) and stimulated with CON-/DKA-P or CON-/DKA-CM for 6 h. The cell monolayers were then perfused with VL medium with 4% FBS at a shear stress of 0.4 dyn/cm² for 1 min (6). Subsequently and continuously, PMNs (1 × 10^6 cells/ml in VL medium with 4% FBS) were perfused over the cell monolayers for 10 min in the presence of the 0.35 dyn/cm² shear stress. All experimental procedures were performed at 37°C using a Nikon Diaphot 300 inverted microscope (Nikon) equipped with a temperature-controlled chamber and SONY CCD Iris Video Camera DXC-107A (Sony) connected to a HD PVR-video recorder (Hauppauge Computer Works) and recorded (MP4 format) for later analyses. PMN adhesion (rebinding stationary for ≥10 s) was counted after 5-min PMN perfusion in five separate randomly chosen areas and expressed as the average number of cells per 0.1 mm².

Reverse transcription quantitative PCR. Expression of adhesion molecule mRNA in hCMEC/D3 cells was quantified using PCR. One-step RT-qPCR was performed for CON/DKA-plasma stimulated cells, whereas a two-step method was performed for CON/DKA-
and DKA type 1 diabetes patients

Table 1. Human clinical and biochemical data for CON and DKA type 1 diabetes patients

<table>
<thead>
<tr>
<th></th>
<th>CON</th>
<th>DKA</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>11.6 ± 1.3</td>
<td>11.9 ± 0.9</td>
<td>0.847</td>
</tr>
<tr>
<td>Sex (boys%)</td>
<td>6/10 (60%)</td>
<td>6/10 (60%)</td>
<td>1.000</td>
</tr>
<tr>
<td>A1C (%)</td>
<td>8.7 ± 0.4</td>
<td>11.7 ± 0.8</td>
<td>0.003</td>
</tr>
<tr>
<td>pH</td>
<td>NA</td>
<td>7.1 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>HCO3⁻, mmol/l</td>
<td>NA</td>
<td>7.9 ± 1.9</td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± SE; n = 10. CON, insulin controlled; DKA, patients either in acute DKA or in insulin-controlled state. The two groups were age and sex matched (n = 10 patients/group; Table 1). Patients with DKA had significantly higher A1C values compared with those with controlled type 1 diabetes (P = 0.003), reflecting elevated blood glucose over the preceding few months. DKA patients all had moderate to severe metabolic acidosis.

RESULTS

Study patients. Plasma was obtained from type 1 diabetes patients either in acute DKA or in an insulin-controlled state. The two groups were age and sex matched (n = 10 patients/group; Table 1). Patients with DKA had significantly higher A1C values compared with those with controlled type 1 diabetes (P = 0.003), reflecting elevated blood glucose over the preceding few months. DKA patients all had moderate to severe metabolic acidosis.

Plasma inflammatory analytes. The levels of inflammatory cytokines and soluble adhesion molecules were measured in plasma from both DKA and CON groups (Table 2; n = 10 patients/group). Out of the 18 cytokines/chemokines assessed, six (CXCL1, CXCL8, IL-6, IFNα2, IL-2, and G-CSF) were found to be significantly increased, and one (CXCL10) was found to be significantly decreased in DKA patients compared with controls. Two physiologically relevant CMs were prepared (DKA-CM and CON-CM) on the basis of measurements from five altered analytes (CXCL1, CXCL8, IL-6, IFNα2, and CXCL10, P < 0.01 to control for repeated measures; Table 2).

Table 2. Human plasma cytokine and soluble adhesion molecule concentrations measured in CON and DKA type 1 diabetes patients

<table>
<thead>
<tr>
<th></th>
<th>CON</th>
<th>DKA</th>
<th>Fold Change</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>4.0 ± 1.8</td>
<td>22.0 ± 4.7</td>
<td>5.5</td>
<td>0.001</td>
</tr>
<tr>
<td>CXCL1 (GROα)</td>
<td>94.4 ± 10.1</td>
<td>203.6 ± 27.2</td>
<td>2.2</td>
<td>0.003</td>
</tr>
<tr>
<td>CXCL8 (IL-8)</td>
<td>9.2 ± 2.4</td>
<td>43.7 ± 16.6</td>
<td>4.7</td>
<td>0.005</td>
</tr>
<tr>
<td>CXCL10 (IP-10)</td>
<td>525.2 ± 92.1</td>
<td>169.1 ± 28.1</td>
<td>0.3</td>
<td>0.004</td>
</tr>
<tr>
<td>IFNα2</td>
<td>28.7 ± 11.2</td>
<td>69.8 ± 25.7</td>
<td>2.4</td>
<td>0.029</td>
</tr>
<tr>
<td>IL-2</td>
<td>1.3 ± 0.5</td>
<td>4.0 ± 1.0</td>
<td>3.0</td>
<td>0.045</td>
</tr>
<tr>
<td>G-CSF</td>
<td>31.6 ± 6.7</td>
<td>96.3 ± 31.9</td>
<td>3.0</td>
<td>0.005</td>
</tr>
<tr>
<td>IL-1β</td>
<td>3.1 ± 1.5</td>
<td>2.4 ± 1.6</td>
<td>0.8</td>
<td>0.172</td>
</tr>
<tr>
<td>IL-10</td>
<td>42.3 ± 20.8</td>
<td>135.5 ± 75.9</td>
<td>3.2</td>
<td>0.326</td>
</tr>
<tr>
<td>IL-17</td>
<td>7.8 ± 4.8</td>
<td>7.7 ± 2.2</td>
<td>1.0</td>
<td>0.082</td>
</tr>
<tr>
<td>IFNγ</td>
<td>20.8 ± 9.8</td>
<td>28.1 ± 17.5</td>
<td>1.4</td>
<td>0.545</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>65.4 ± 24.0</td>
<td>33.4 ± 7.3</td>
<td>0.5</td>
<td>0.821</td>
</tr>
<tr>
<td>VEGF</td>
<td>114.2 ± 56.4</td>
<td>179.3 ± 43.1</td>
<td>1.6</td>
<td>0.137</td>
</tr>
<tr>
<td>CCL2 (MCP-1)</td>
<td>336.4 ± 33.4</td>
<td>302.0 ± 43.4</td>
<td>0.9</td>
<td>0.539</td>
</tr>
<tr>
<td>CCL3 (MIP-1x)</td>
<td>9.2 ± 1.7</td>
<td>14.6 ± 3.4</td>
<td>1.6</td>
<td>0.184</td>
</tr>
<tr>
<td>CCL4 (MIP-1β)</td>
<td>46.9 ± 7.5</td>
<td>52.3 ± 8.7</td>
<td>1.1</td>
<td>0.642</td>
</tr>
<tr>
<td>TNFα</td>
<td>10.0 ± 0.8</td>
<td>9.3 ± 1.6</td>
<td>0.9</td>
<td>0.694</td>
</tr>
<tr>
<td>sCD40L</td>
<td>577.6 ± 91.2</td>
<td>1,056.0 ± 299.1</td>
<td>1.8</td>
<td>0.131</td>
</tr>
<tr>
<td>sE-selectin²</td>
<td>61.6 ± 8.6</td>
<td>69.0 ± 8.2</td>
<td>1.1</td>
<td>0.536</td>
</tr>
<tr>
<td>sICAM-1*</td>
<td>203.7 ± 13.8</td>
<td>185.6 ± 23.4</td>
<td>0.9</td>
<td>0.516</td>
</tr>
<tr>
<td>sVCAM-1*</td>
<td>1,347.5 ± 63.3</td>
<td>1,232.9 ± 99.8</td>
<td>0.9</td>
<td>0.345</td>
</tr>
</tbody>
</table>

Values are means ± SE; n = 10. CXCL, CXC chemokine ligand; GROα, growth-regulated oncogene-α; IP-10, IFNγ-induced protein-10; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; VEGF, vascular endothelial growth factor; CCL2, -3, and -4, respectively; MCP-1, monocyte chemotactic protein-1; MIP-1α-β, macrophage inflammatory protein-1α-β, respectively; sCD40L, soluble cluster of differentiation 40 ligand; sE-selectin, sICAM, and sVCAM, whereas all the rest are in pg/ml.

*Concentrations are reported in ng/ml for sE-selectin, sICAM, and sVCAM, whereas all the rest are in pg/ml.

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00659.2013 • www.ajpendo.org
Three soluble adhesion molecules (sE-selectin, sICAM-1, and sVCAM-1) were measured in plasma as markers of endothelial activation/injury. DKA did not alter plasma soluble adhesion molecule concentrations relative to type 1 diabetes control patients (Table 2).

DKA-induced oxidative stress in hCMEC/D3 cells. Intracellular oxidative stress, as a consequence of ROS production, is an early marker of vascular endothelial cell activation during inflammation (6, 18). Stimulation of hCMEC/D3 with DKA-P, compared with CON-P, for 1 h resulted in a significant increase in ROS production (P < 0.01; Fig. 1A). On the contrary, stimulation of hCMEC/D3 cells with DKA-CM for 1 h did not increase oxidative stress (Fig. 1B). These data suggest that plasma factors in DKA that are distinct from the altered inflammatory cytokines/chemokines mediate cerebrovascular endothelial oxidative stress.

DKA plasma failed to induce TEER changes in a “static” system. Given the significant increase in hCMEC/D3 ROS elicited by DKA-P, we tested whether DKA-P would alter hCMEC/D3 permeability. Because our experimental “flow” system does not allow for permeability measurements, we could test only the effects of DKA-P under static conditions. Application of DKA-P did not alter TEER relative to CON-P (Fig. 2), suggesting that DKA-P alone was insufficient to alter hCMEC/D3 permeability in the absence of shear stress elicited by flow.

DKA-induced a proadhesive phenotype in hCMEC/D3 cells under flow conditions. A common vascular reaction to injury is adhesion of leukocytes to endothelium (16). Stimulation of hCMEC/D3 cells with either DKA-P or DKA-CM for 6 h followed by perfusion of freshly isolated PMNs resulted in significantly increased adhesion compared with controls (plasma P < 0.01, CM P < 0.05; Fig. 3). Because CXCL1 and CXCL8 are major neutrophil chemotactants increased in...
plasma by DKA, we then added 1 μg/ml CXCL1/CXCL8-neutralizing antibodies to either DKA-P or DKA-CM. CXCL1/CXCL8-neutralizing antibodies significantly reduced PMN adhesion to hCMEC/D3 compared with an isotype control (mouse IgG1, P < 0.01; Fig. 4). These results suggest that circulating CXCL1/CXCL8 plays a key role in PMN adhesion to cerebrovascular endothelium in DKA.

To further elucidate the endothelial receptors mediating CXCL1/CXCL8, we incubated hCMEC/D3 with 1 μg/ml of anti-CXCR1/CXCR2 antibodies for 6 h prior to the addition of DKA-P or DKA-CM. CXCR1/CXCR2-neutralizing antibodies significantly suppressed PMN adhesion to hCMEC/D3 compared with the isotype control (mouse IgG2A) (plasma P < 0.01, CM P < 0.05; Fig. 5). These latter data suggest that the DKA-induced increase of CXCL1/CXCL8 elicited a cerebrovascular endothelium proadhesive phenotype via CXCR1/CXCR2.

As a final experiment, we measured adhesion molecule mRNA expression (E-selectin, ICAM-1, and VCAM-1) in hCMEC/D3 cells stimulated for 4 h with either DKA-P or CON-P. These latter experiments showed that DKA-P failed to alter mRNA expression levels of the three adhesion molecules relative to CON-P (Fig. 6).

DISCUSSION

In the present study, we found altered inflammatory cytokines/chemokines in plasma from pediatric type 1 diabetes with acute DKA and showed that this DKA-induced inflammation was sufficient to instigate leukocyte adhesion to the cerebrovascular endothelium. Leukocyte-endothelial interaction is a key mechanism instigating vascular injury/dysfunction (16). We identified CXCL1/CXCL8 as mediators of human DKA-induced leukocyte-endothelium adhesion via CXCR1/CXCR2. To our knowledge, experiments using human DKA tissues have not been reported previously. Furthermore, the data presented herein may help explain intracranial vascular complications in children with DKA.

DKA elicits a systemic inflammatory response associated with increased blood inflammatory markers (8, 20–22, 25, 27, 35). We report that levels of five cytokines are significantly altered in plasma from children with DKA, including CXCL1 (GROα), CXCL8 (IL-8), IL-6, IFNα2, and CXCL10 (IP-10). Soluble adhesion molecules, including sE-selectin, sICAM-1, and sVCAM-1, were unchanged in plasma by DKA. These data indicate a host cytokine/chemokine reaction to DKA independent of changes in common adhesion molecules (7, 16).

Leukocyte adhesion to the endothelium is a hallmark of inflammation (16). CXC chemokines, including CXCL1 (GROα) and CXCL8, (IL-8) are critical for leukocyte recruitment (28). Circulating levels of CXCL1 were increased significantly in adult type 1 diabetes (47), and CXCL8 is elevated in children with type 1 diabetes (10) and severe/moderate DKA.
CXCR1 and CXCR2 are expressed on vascular endothelium and mediate cell proliferation, survival, migration, invasion, and capillary-like structure formation (19, 46). CXCL1 and CXCL8 activate CXCR2, whereas only CXCL8 binds CXCR1 with high affinity (13). CXCL8 is generally more potent as a human neutrophil chemotactic agent and for instigating powerful respiratory bursts in human neutrophils (13, 29), for which the latter may inflict significant injury to the underlying endothelium.

CXCL8 induces the formation of filopodia-like protrusions on endothelial cells, which are mediated by activation of CXCR1/CXCR2. On these mesh structures, the circulating chemokines are presented to PMN by glycosaminoglycan (50), and CXCL8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways (43). Thus, our data are consistent with circulating CXCL1/CXCL8 activating cerebrovascular endothelial cells through CXCR1/CXCR2, with the reinforcement of chemokine presentation to neutrophils by glycosaminoglycan. CXCL1/CXCL8 mediates adhesion of PMN through the activation of LFA-1 and Mac-1 (45).

In our static Transwell insert system, DKA-P alone failed to alter cerebrovascular endothelial permeability. In contrast, DKA-P induced PMNs to adhere on cerebrovascular endothelium under flow conditions that induce endothelial shear stress. Adhered leukocytes can migrate to the stroma and compromise microvessel integrity, which is associated with a local disruption of the cerebrovascular endothelial cell tight junctions and degradation of basement membrane (16). Cerebrovascular disruption increases permeability, allowing fluid to pass into the brain parenchyma, causing vasogenic edema (24). Compromised microvessels are also prone to platelet adhesion and aggregation that could result in hemorrhage or stroke (12, 34).

In this study, DKA significantly increased IL-6 and IFNα2, whereas CXCL10 was significantly decreased. IL-6 is a pro-inflammatory cytokine (26) shown previously to be elevated by DKA (20, 27). IFNα, a cytokine that participates in the innate immune response to viral infection (37), has not previously been associated with human DKA. DKA decreased the levels of CXCL10, a chemoattractant for lymphocytes/macrophages (17), suggesting that the primary chemokine response in DKA is neutrophilic (elevated CXCL1/CXCL8).

Oxidative stress markers were elevated in the postmortem brains of two pediatric patients after fatal brain edema associated with DKA (23). Cerebrovascular dysfunction is caused by ROS directly and via tight junction modification and matrix metalloproteinase activation (39). Intracellular ROS accumulates secondary to mitochondrial dysfunction (30, 36). We show that DKA-P, but not DKA-CM, elevated intracellular oxidative stress in hCMEC/D3, indicating that DKA-P contains mitochondrial toxic substances exclusive of alterations in the cytokines/chemokines we investigated. ROS production induced by DKA-P was independent of pH changes, as our experiments were performed at physiological pH due to the pH buffering capability of the culture media. At present, it is unclear how ROS production in cerebrovascular endothelium would be influenced by DKA conditions, as both the intracellular pH and enzymatic activities can vary considerably (44). Oxidative stress at the cerebrovascular endothelium would be additive both from endogenous endothelial production and from adjacent neutrophils stimulated by CXCL1/CXCL8.

Despite the novelty of our study, there are limitations. First, DKA-P was diluted 20% (vol/vol) in the culture media, a dilution necessary to avoid plasma coagulation and maintain hCMEC/D3 monolayer integrity. Because the diluted plasma may have underestimated cytokine/chemokine-mediated effects, we employed cytokine mixtures that were designed to replicate physiological concentrations in plasma. Second, DKA-P was added to culture media that had pH buffering effects and thus did not reproduce the acidic state. Thus, our experiments are selective for DKA-induced inflammatory mediators. Future experiments should investigate mechanisms within a range of pH (i.e., 6.9–7.4) encountered during DKA presentation and correction. Third, in an attempt to replicate the hypovolemic DKA state in our experiments, we used relatively low shear stress (6). Given that the in vivo cerebrovascular shear stress is unknown in DKA and likely evolves between DKA presentation and pH/volume correction, future studies should investigate leukocyte adhesion dynamics with a
CEREBROVASCULAR ENDOTHELIUM-PMN ADHESION IN DKA

range of shear stress (i.e., 0.35–3.5 dynes/cm²). Fourth, for ethical and practical reasons, we used hCMEC/D3 cells as a model for the cerebrovascular endothelium. Despite the well-characterized properties of the hCMEC/D3 cell line, we cannot definitively conclude that the properties mirror those of a child’s developing cerebrovasculature. Fifth, the exact roles of CXCL1 and CXCL8 could not be dissected due to their overlapping actions at CXCR1/CXCR2. Finally, our experiments do not rule out additional autocrine factors that may have been released by DKA-activated cerebrovascular endothelium.

In conclusion, we had demonstrated previously that DKA elicited with pancreatic toxins in a juvenile mouse model produced systemic inflammation associated with cerebrovascular endothelial cell dysfunction (6). In this DKA study, we expanded our mechanistic investigations to human tissues, showing that elevated CXCL1/CXCL8 mediates leukocyte endothelial adhesion, potentially contributing to DKA-associated intracranial vascular complications.

ACKNOWLEDGMENTS

We thank Dr. Carolina Gillio-Meina, Research Associate at the London Translational Research Centre (www.translationalresearch.ca), for assistance with plasma collection. We also thank Dr. Fukashi Serizawa, Christopher Blom, and Claudia Augustine for technical assistance. This article was critically reviewed by members of the Canadian Critical Care Translational Biology Group (www.CCCTBG.ca), Dr. Brent Winston, and Dr. Alison Fox-Robichaud.

GRANTS

D. D. Fraser was supported by the grants from the Children’s Health Foundation (www.childhealth.ca, London, ON, Canada) and the PSI Foundation. G. Cepinskas was supported by the Heart and Stroke Foundation of Ontario (N16914).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

REFERENCES

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00659.2013 • www.ajpendo.org

